generate_X.Rd
Creates a toy data set \(S = (X)\) where the columns of \(X\) are sampled from an independent Gaussian distribution with mean \(\mu_i\) and standard deviation \(\sigma_i\), i.e. \(N(\mu_i, \sigma_i^2)\). The final dimension will be \(n \times p\), with the number of data points \(n\) to be specified.
generate_X(n = 100, mu = rep(0, 10), sigma = rep(1, 10))
n | The desired number of data points in the data set. |
---|---|
mu | A \(p\)-dimensional vector of means for \(\mu\). |
sigma | A \(p\)-dimensional vector of non-negative standard deviations for \(\sigma\). |
An \(n \times p\) dimensional data frame given by \(S = (X)\). In the default case, the columns \(X_i\) are sampled from \(N(0,1)\), \(n = 100\) and \(p = 10\).
generate_X() #> # A tibble: 100 × 10 #> X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 #> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 -1.14 -0.579 -0.708 0.479 1.00 -0.712 -0.166 0.842 0.578 -0.110 #> 2 -0.280 -0.169 1.48 1.67 0.528 -1.36 0.120 1.26 0.113 -1.05 #> 3 -0.894 -1.92 0.845 -0.0365 1.16 -0.501 -0.662 -0.710 0.440 -0.891 #> 4 0.137 -1.53 1.29 -0.441 0.173 1.44 -0.531 -0.354 -2.00 -0.619 #> 5 -0.749 -1.11 0.298 0.734 0.578 -0.512 -0.301 -1.08 1.04 0.255 #> 6 0.518 1.60 -0.406 -0.575 -0.116 -0.00197 -0.602 0.967 -1.01 -0.439 #> 7 -0.192 -0.640 -0.139 0.0749 0.905 1.78 -0.318 -0.481 -0.505 1.47 #> 8 0.0288 1.57 -0.223 0.0593 -0.0166 1.03 0.308 -1.04 0.0900 0.833 #> 9 0.359 -1.45 1.75 0.848 -0.922 -0.581 0.799 0.200 -1.29 -0.914 #> 10 -0.0290 -0.792 -0.0817 2.58 -1.06 -1.59 1.75 1.71 -1.73 -0.273 #> # … with 90 more rows generate_X(n = 40, mu = 1:10, sigma = rep(1, 10)) #> # A tibble: 40 × 10 #> X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 #> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 2.14 0.787 2.03 3.65 4.17 4.89 7.13 10.3 9.83 9.38 #> 2 -0.382 3.37 1.31 3.45 4.04 5.37 6.63 7.62 7.63 9.81 #> 3 0.156 2.08 1.52 3.98 5.47 4.52 6.55 8.03 9.19 10.4 #> 4 -0.837 0.734 5.43 3.66 6.49 6.15 8.20 8.78 11.0 9.97 #> 5 2.04 3.17 2.77 4.19 5.85 3.70 7.96 6.02 8.19 9.47 #> 6 1.22 2.70 4.11 4.35 4.91 5.56 8.10 7.99 9.25 13.1 #> 7 1.80 2.80 2.56 3.21 4.24 5.35 7.05 8.70 9.51 8.58 #> 8 1.71 0.998 4.26 3.25 4.58 6.42 6.93 9.22 8.50 10.3 #> 9 0.683 1.32 4.44 2.15 3.88 6.05 6.73 7.86 8.10 8.24 #> 10 -1.25 2.72 2.08 2.44 3.63 4.71 5.91 7.50 10.0 8.98 #> # … with 30 more rows